Speaker Verification Robust to Talking Style Variation Using Multiple Kernel Learning Based on Conditional Entropy Minimization
نویسندگان
چکیده
We developed a new speaker verification system that is robust to intra-speaker variation. There is a strong likelihood that intraspeaker variations will occur due to changes in talking styles, the periods when an individual speaks, and so on. It is well known that such variation generally degrades the performance of speaker verification systems. To solve this problem, we applied multiple kernel learning (MKL) based on conditional entropy minimization, which impose the data to be compactly aggregated for each speaker class and ensure that the different speaker classes were far apart from each other. Experimental results showed that the proposed speaker verification system achieved a robust performance to intra-speaker variation derived from changes in the talking styles compared to the conventional maximum margin-based system.
منابع مشابه
Gini Support Vector Machine: Quadratic Entropy Based Robust Multi-Class Probability Regression
Many classification tasks require estimation of output class probabilities for use as confidence scores or for inference integrated with other models. Probability estimates derived from large margin classifiers such as support vector machines (SVMs) are often unreliable. We extend SVM large margin classification to GiniSVM maximum entropy multi-class probability regression. GiniSVM combines a q...
متن کاملUsing Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملUsing Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملA Conditional Entropy Minimization Criterion for Dimensionality Reduction and Multiple Kernel Learning
Reducing the dimensionality of high-dimensional data without losing its essential information is an important task in information processing. When class labels of training data are available, Fisher discriminant analysis (FDA) has been widely used. However, the optimality of FDA is guaranteed only in a very restricted ideal circumstance, and it is often observed that FDA does not provide a good...
متن کاملA Comparative Study on Kernel-Based Probabilistic Neural Networks for Speaker Verification
This paper compares kernel-based probabilistic neural networks for speaker verification based on 138 speakers of the YOHO corpus. Experimental evaluations using probabilistic decision-based neural networks (PDBNNs), Gaussian mixture models (GMMs) and elliptical basis function networks (EBFNs) as speaker models were conducted. The original training algorithm of PDBNNs was also modified to make P...
متن کامل